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On the Coupling Between a Quasiperiodic
Structure and an Asymmetric Output Arm

Levi Schichter and John A. Nation

Abstract—We present the analysis of the electromagnetic cou-
pling between a quasi-periodic disk loaded structure and an
asymmetric radial arm. The field is excited by a current distri-
bution which models the spatial growth of a space-charge wave
in a traveling wave structure. The output power is controlled
by a stub tuner. Maximum power does not occur for minimum
reflection. The condition for this regime is presented.

I. INTRODUCTION

N many high power devices the electromagnetic energy

is confined and guided by metallic surfaces. These sur-
faces play an important role in the interaction process of the
electrons with the electromagnetic wave(s). A klystron, for
example, consists of a metallic pipe to which two or more
cavities are connected. The pipe is designed such that at the
frequency of interest the electromagnetic wave is below cutoff
and in the absence of the beam the cavities are isolated. In
this kind of structure power levels of 50 MW at 11.4 GHz
were achieved at SLAC [1] but since the interaction occurs in
the close vicinity of the cavity gap the gradients at the output
cavity are high and the system is susceptible to RF breakdown.

This problem is less severe in a disk loaded traveling wave
tube (TWT) which consists of a series of coupled cavities.
These cavities are basically a short section of a periodic
structure. In this case the interaction is no longer confined
to the vicinity of the cavity, but it is distributed along the
entire structure. The first experiments on high power TWT
performed at Cornell [2] indicated that 100 MW at 8.76
GHz can be achieved before the system oscillates. Although
no RF breakdown was observed in these kind of structures
the fact that the input is no longer isolated from the output
allows waves to be reflected backwards and this feedback
may ultimately cause the system to oscillate. To envision the
process imagine that 20 kW of power are injected into the
system and the one-pass gain is 40 dB. Thus, before the RF
leaves the system 200 MW of power are available. If the
reflection coefficient at the output is p = 0.1 and a similar
reflection occurs at the input end then the contribution of the
reflection is of the same order as the injected power and the
system oscillates.
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In order to isolate the input from the output the TWT was
split in two sections separated by a sever (lossy material whose
radius is below cut-off). The second set of experiments on
two stage high power TWT indicated that power levels in
excess of 400 MW are achievable with no indication of RF
breakdown [3]. In this case however the output spectrum was
300 MHz wide and a significant amount of power (up to 50%)
was measured in asymmetric sidebands. The latter observation
was investigated theoretically [4] and it was concluded that
it is a result of amplified noise at frequencies selected by
the interference of the two waves bouncing between the
ends of the last stage. In fact it has been shown [5] that
what we call amplifier and oscillator are the two extreme of
possible regimes of operation and any practical device operates
somewhere in between according to the degree of control of
the reflection process. We have suggested [6] a method to
eliminate the problem of reflections by designing a structure
in which the time it takes the first reflection to reach the
input end is of the same order of magnitude as the electron
pulse length. Thus, by the time the reflection becomes relevant
there are no more electrons to interact with. This method was
successfully demonstrated [7] experimentally and power levels
of 200 MW were achieved at 9 GHz. The spectrum of the
output signal was less than 50 MHz and the pass-band of the
periodic structure was less than 200 MHz. For this reason
we call it a narrow band structure (NBS). The inner pipe
of this structure has a radius of 6.2 mm and the exponential
decay (of the first evanescent wave) between two cavities is
of the order of 0.1. This low coupling level resembles the
isolation of the cavities in a klystron. Furthermore the low
energy (group) velocity is directly associated with an increased
spatial growth rate which, in terms of dB/cm. can be 5-6 times
larger than in a regular TWT and about half to a third of the
output cavity of an klystron (taking the effective aperture as
the interaction length). The 200 MW power levels generated
with the NBS were accompanied by gradients larger than 200
MV/m. Although no RF breakdown was experienced, for any
further increase in the power levels it will be necessary to
increase the volume of the last two or three cells in order to
minimize the electric field on the metallic surface. Thus, the
system becomes quasi-periodic.

To summarize, the main two problems of an extraction
section based on a quasi-periodic disk loaded structure are:
1) minimization of reflections from output end in order to
avoid oscillation at high power levels and 2) tapering of the
output section in order to avoid breakdown and compensate
for the velocity decrease of the electrons. In order to optimize
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Fig. 1. The schematic of the system under consideration. The external radius
Rext, the groove/arm width d and the separation between any two cavities
can be arbitrary. The internal radius R, has to be maintained the same.
The asymmetry in the system is introduced by the output arm and the stub
as illustrated.

these two conflicting requirements we have developed an
analytical technique [8], [9] which permits design of a quasi-
periodic structure. In Ref. 8 the pure electromagnetic problem
is presented in the sense that an incident wave is injected
into the structure and the effect of the various geometrical
parameters on the transmission/reflection pattern are examined.
The technique was further developed [9] to account for current
sources or electron beams within the framework of the hydro-
dynamic model. In all these cases the system was assumed to
be symmetrical, including the input and output arm.

In this study we present the analysis of a quasi-periodic
structure and an asymmetric arm to account for a realistic
coupling to a regular (rectangular) waveguide. In order to
match the output arm to the quasi-periodic structure a tuning
stub is attached to the output cavity. In literature [10], [11],
there are two quasi-analytical methods for characterization of
similar structures: the transmission matrix method and the
scattering matrix method. The first method becomes unstable
when many discontinuities have to be considered due to
the very large or very small numbers associated with the
evanescent waves which are necessary to retain in order to
have an accurate information about the phase. Furthermore,
it can not describe (without pure numerical methods) the

coupling to symmetric input/output arms. The second method
is more stable but to the best of our knowledge it is difficult
in its framework to describe the beam wave interaction.

II. GREEN’S FUNCTION

The quasi-periodic structure consists of a series of pill box
like cavities attached to an “infinitely” long pipe of radius
R,n.. Two radial arms are connected to the last cavity; one
arm is open allowing wave propagation and the other is short
circuited to model a stub tuner. The schematics of the system
are presented in Fig. 1. In this particular study we have in
mind the output section of a high power microwave structure
which is fed by a bunched beam. Therefore we do not include
an input arm. The width of each one of the cavities is denoted
by dn,n =1,2--- N; where N is the total number of cavities.
The cavities can be of any dimension provided that the basic
geometry is preserved.

For a symmetric system the field in the inner cylinder
(0 <7 < Ryy) can be represented by the zero order azimuthal
Floquet-harmonic. In the present system the two arms break
the azimuthal symmetry therefore we have to consider the
entire spatial spectrum of waves. In this region the electromag-
netic field has two components: one which is the contribution
of the current density in the absence of any boundaries—also
called the primary field. The second contribution is a result
of the metallic surface and the boundary conditions associated
with their presence. This is also referred as the secondary field.
However the cutrent density which excites the primary field is
taken to be azimuthally symmetric thus we shall consider only
the symmetric contribution of the free space Green function.
Subject to these conditions the magnetic vector potential in
the pipe is given by

Ry
A(r, 2, 5 w) =2mpo / dr' v/
0

/ dz’' G (r,z|r’, 2)J.(r', 2 w)

—0o0

+ / Tk f: A (k) L (T7)

m=—0o0

g IkzgmIme (D

where T? = k? — w?/c? I,,(z) is the mth order modified
Bessel function of the first kind and the system is assumed
to be in steady state (e/“?). The free space Green’s function
is given by

G (r,z|r',2") = / dkgk(rlr’)e‘jk(z"zl) (2)

and
1
i) = (e
[ L(Tr)Ko(Tr") 0<r<r'<oo 3)
Iy(Tr)Ko(Fr) 0<r' <r<oo.

The first term in (1) is the magnetic vector potential as-
sociated with the primary field and from the second term
one derives the secondary electromagnetic field. Note that
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the other two components of the magnetic vector potential
are zero (A, = 0 and Ags = 0) and the scalar electric
potential is derived using the Lorentz gauge i.e. ¢(r, z;w) =
—(?/jw)(BA, (1, z;w) [ 0z).

In the grooves the electromagnetic field can be represented
by a superposition of modes which satisfy the boundary
conditions on the metallic walls. In principle an infinite number
of such modes should be taken. Our experience indicates that
as long as the vacuum wavelength is about five times larger
than the groove/arm width the first mode [transverse electric
magnetic (TEM)] is sufficient for most practical purposes. This
assumption is by no means critical for the present analysis and
the arguments are very similar when a larger number of modes
is required. However, we use it since it makes the presentation
much simpler. In order to quantify this statement let us give a
simple example of a periodic disk loaded structure: consider
the case when Reyy = 15.9 mm. R, = 9.0 mm, the period
of the system is 10.0 mm and the disk is 5 mm wide. For
this geometry it is required that the phase advance per cell
will be 120° at 9 GHz. With 39 spatial (longitudinal) Floquet
harmonics, the lower cutoff frequency (kL = 0), using three
modes (TEM, TMy; and TMy2) in the grooves, was calculated
to be 8.206 GHz, with two modes (TEM and TMy1) 8.192 GHz
and 8.192 GHz when only the TEM mode was used. For the
higher cutoff (kL = 7) the calculated frequencies were 9.270,
9.229, and 9.229 GHz, correspondingly. Thus in the regime
of interest the the typical error associated with the neglection
of the higher modes in the grooves is expected to be on the
order of 1% or less. According to the assumption above in
each one of the grooves (with the exception of the last one)
the magnetic vector potential is given by

AMr, 2 dw) = f: D{ T (S7)e™%, ()

m=-—00

where D,(Lm) is the amplitude of the magnetic vector potential
in the nth groove.

w [09) w
Tm,n (;7") = Jm <:7) Yo (ZRext,n)

RACOINCTI

and Ry ,, is the external radius of the nth groove; later we
shall also use the function

T (20) 220 (1) (2
() (2)

The prime denotes the derivative with respect to the argument
of the function. As above the other two components of the
magnetic vector potential are zero and when considering only
a single mode in the grooves the electric scalar potential is
Zero.

In the output cavity (Rin <7 < Rex n) there are two
waves. One wave propagates outwards and is represented by
mith order Hankel function of the second kind 2 )((w /e)r).
The other wave is reflected by the external wall and propagates

inwards thus is represented by H,g%)((w /c)r). Hence:

Az[Rint <r< Rext,47 ¢7 |Z - Z(N” < d(N)/Q* w]

- 5 [t (30) s ()
)

This solution satisfies the boundary conditions at r =
Rext,v. Consequently the two sets of amplitudes Uy, and V,,
are related by a reflection matrix

Un = i Rm,m’vm'~ (6)

m/=—oc

In the next section we shall show how to determine this matrix.
At the moment we shall consider it, as known. Next we define
the functions

Hpyoo (%r) = H® (%7'>6m7mr + H,(,}) (%7')Rm,m/

and
— (ET) = Hg)/((i)?')(Sm,m/ + HT(,})’(ET)Rm’m/.
' c c c
With the first function we can write (5) as

Az[Rmt <r< Rewt,4a ¢7 |Z - Z(N)’<d(N)/27 w]

m,m’=—co

Hopo: (%T) VeI, )

As in the other grooves the other two components of the
magnetic vector potential are zero and so is the electric scalar
potential (subject the condition of a single longitudinal mode).

In order to determine the various amplitudes in terms of the
known current density we impose next the boundary conditions
at the only place where they are not satisfied as yet, r = Rjy.
The continuity of the longitudinal electric field (E,) can be
simplified to the form

A (k) (A) + By (k) Ko (A)

_ 1 a2

T2 A?

N-1
> DU, (@)dn L (k)
n=1

+dNLN(k) Z Hm,m’vm’

m/=—o0

8)

whereas the continuity of the tangential magnetic field in the
symmetric grooves

aDIILY (0 = [ AL AR, ()

-0

+ B (k) K (A)]- ©
Similarly, in the output cell

@ 3 Hyp@Vor = [ dkIABAARRIL(A)

m/=—o0

+ B (k) K, (A)]. (10)
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The following definitions have been used in the last expres-
sions:

1 Be
B,.(k) = —,uotsm 0/ dr'r' Iy(I'r')
0

/ dz'e™ I, (v 2';w), (11)
1 Zp+dn /2
L (k) == / o dze?k, (12)

In addition é,,,, is the Kroneker delta function, & = (w/c¢)Rins
and A = T'Rj,. As shown in [8], [9] it is convenient to
substitute A,, (k) from (8) in (9) and (10). The result reads

N— 1
Snmt + T (a)xg’ﬁ,]Dgﬁ) + x(m)
n’:l
Z H, i (0) Vi = s (13)
and
> Hi (@) + Hon s ()X Vi
B N-1
+ 3 D)X TADM = 53, (14)
n=1
In these expressions,
(m) _ dn’a m(A)
XD =5 [ A L wLew  as)
and
1 [ 1
m) — _— B k 16
) =2 [ B T 8

In this study we do not consider the effect of the secondary
electromagnetic field on the source i.e. electrons, therefore,
the term sslm) is assumed to be given thus the formulation
above permits us to calculate the amplitude in each one of
the grooves. All the elements of the matrices involved are
determined by analytic functions since, based on the Cauchy
residue theorem, the y matrix in (15) can be simplified to read

[1 — e~Temdn/2 sinhe (T mdn/2)]
s,m ,
(m) n=nmn
Xn,n' ! /
R12nt 32:1 Fd—”e“Ps-m'z“_zn' sinhe (T's mdn/2)

s-’;rilnhc (Tsdn /2) otherwise
a7

where T's . = +/(Ps,m/Rint)? — (w/€)?,Ps,m is the sth zero
of the Bessel function of the first kind of order m and
sinhc () = sinh (z)/x.

III. REFLECTION MATRIX

The coupling between the various azimuthal harmonics
occurs in the last cell and in this section we shall formulate
it in terms of a reflection matrix introduced in (6). In the
last cell [Rint <1 < Rext,n, |2 — 28| <dn/2 and 0< ¢ < 27]
the magnetic vector potential is given by (5). In the stub this
potential is given by

A [Rext,n <7< R, 3 < ¢ < s, |z — 2(N)|<d(N)/2; ]

= Sutoemy(Z7)sinlo(m)(6 = ¢2)]  @8)

where o(m) = wm /(¢4 — P3), Rstun is the external radius of

the stub and
() = (25 (2
() ().
We shall also use
t(2r) =9 (Zr) Yo (2 R
() ()

In a very similar way, the magnetic vector potential in the
output arm is given by

Az[Rext,N <r<R;, 91 <p< 2, |Z - Z(N

= > D, (2r) sin[(m)(¢ — ¢)
m=1

)| <d(N)/2; ]

19)

with v(m) = mm/(¢p2 — ¢1).

Imposing the continuity of the tangential components of the
electromagnetic field at r = Ry ny and after some algebraic
manipulations we obtain

Ry = = f: [0 D)0 (20)
where
o e = HD s — 2P O (0
H?
Z H,E%L/) (5) m,n(¢1, ¢2) m’,n(¢17 ¢2)
_ g — - ¢3Hg2/(€)
Nt (),
£ 1t;(n)(£) mn(¢3 ¢4) m’ n(¢37¢4)
2D
¢ = (w/¢)Rexe,n and

Mm,n(xﬁ 1’2) =

o .
L / d¢ &I™% gin [wn ¢ xl-] .
@

1 — T2 To — Tt
(22)

This concludes the formulation part of this study. In the next
section we present one example of the use of this technique,
with emphasis on the effect of the arm and the stub.
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Fig. 2. The “gain” as defined in (28) and the reflection from the wall (in
dB) of the zero azimuthal harmonic.

IV. DISCUSSION AND CONCLUSIONS

In order to illustrate the potential of the technique presented
above, we consider a current distribution which models inter-
action in a traveling wave structure at the limit of saturation.
It has the form

z

(1, z;w) = Jpe~ K= (1 - >€(Rb -7y (23)

sat
where the term 1—(z/dsat) accounts for the saturation effect in
a high efficiency system jh(x) is the heavyside step function.
The characteristic saturation length dg,: is taken here to be
1.2 times larger than the total length of the system. The space-
charge wavenumber K is assumed to be complex and has the
form K = (w/c)(1/Buv)+6k(1+35v/3) as in a traveling wave
tube at resonance; [3,, is the normalized average velocity of
the electrons at the input. The results presented below are for
Baw = 0.94, 6k = 60 m~! and for a beam radius Ry = 2 mm.

It is convenient to normalize the amplitude of the magnetic
vector potential with Jo’]TRg to- Thus, the total power emitted
in the presence of the structure (subscript 5;) through the output
arm is given by

— P
Pu=r————

" I(JomR2)?ng

(Y P2 1 () 2

_<ch> T ’;|DN % 24)

where 55\7) = D%L) /Jom R21o. Now we introduce the nu-

merical values of the geometrical parameters of the structure
under consideration: the inner radius is Ry = 9 mm, the
external radii of the cavities are Royy1-4 = 2.86, 3.00, 3.28
and 3.50 cm respectively; the widths di-4 = 4.4, 4.0, 3.6 and
5.0 mm. The drift region is 6 mm between the first three
cavities and 1 mm between the third and fourth cavity. The
output arm occupies the region between —30° < ¢ < 30° and
the stub between 150° < ¢ < 180°. For the calculation of the
reflection matrix 11 azimuthal harmonics (—5 < m < 5) and 18

TABLE I
MAXIMUM GAIN AND MINIMUM REFLECTION FOR VARIOUS SPAN OF THE
STUB OR ARM; IN BRACKETS THE STUB LENGTH ( Retub — Rext 4 )

Arm, -18.0< ¢ <18.0 | Arm -225<$<22.5 | Arm -300<¢ <300

Stub 162 0<$p <1980 | |p| =-40dB lp| =-42dB ol =-45dB
(035%) (035)) (035%)

Gam = 11.4dB Gain = 11 6dB Gain = 12.2dB
(0 461) (0 461) (0 461)

Stub 157 5< <2025 ||p| =-43dB Ip| =-44dB Il =-48dB
(0300) 0300) (0300)

Gamn=115dB Gamn =11 8dB Gain =12 3dB
0 41%) 0410 (0410

Stub 1500<¢p <2100 | Ip|] =-49dB Ip] =-5.1dB Ipl =-55dB
(0.260) (0 263) (0 262)

Gamn=113dB Gam =11 6dB Gam =12 2dB
(0362) (0.362) (0 36A)

radial modes were retained. Finally the operation frequency is
9 GHz.

In order to emphasize the effect of the structure we shall
compare the above power with the power emitted by the same
current distribution, but limited to the region 0 < z <dy, in
free space (subscript 7, ). The latter reads

— P
Pf_g Eil(] RZ D)
s\Jom b) 7o
21
= (Edt) _g<dsat7dt7K7£)7 (25)
c 6 c
where
w
g (dsata dy, K, Z)
= 2/0 dfsin® 6
(e é(}(— ¥ cos 9) . ©6)
dsat 2 c
d: is the total length of the structure, and
F<%,g> =e ¢ sinc(é) — j%%eﬂf
.. £cos(€) — sin
. {—j sinc(&) + —-“(5)52 () .
(27)
Based on the this quantity, we can define the gain as
- Fst
Gain (dB) = 10log | = (28)
Pf 5.

which is illustrated in Fig. 2 as a function of the stub
length. In addition we plotted on the same graph the effective
reflection coefficient of the zero harmonics from r = Regy 4
ie. p = Ro,. There are two major factors which are apparent
here: 1) the stub acts as a tuner and 2) the maximum gain
does not occur for minimum reflection. We examined this
feature for 2.0 < Rext a[cm] < 3.5 and there was practically
no change in the value of the maximum gain. However, the
geometry of the stub has to be changed in order to achieve
this maximum. The angular span of the stub and the arm have
minor effect on the maximum gain and minimum reflection
but a significant impact on the geometrical condition for their
occurrence {(( Rstub — Rext,4)/A ). This fact is summarized in
Table 1. Varying the angular span of the arm has a smaller
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effect than changing that of the stub. Furthermore we found
a small increase (1 dB) when the central axis of the stub was
perpendicuiar (rather than anti-parallel) to that of the output
arm.
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